神经网络在提高锂离子电池检测精度中的研究  被引量:1

Research BP Neural Network in Enhancing the Controlling and Testing Accuracy of Li-Ion Electric Vehicle Battery

在线阅读下载全文

作  者:肖仁耀[1] 肖昕[1] 

机构地区:[1]中国电子科技集团公司第四十八研究所,湖南长沙410111

出  处:《电子工业专用设备》2009年第9期14-18,44,共6页Equipment for Electronic Products Manufacturing

基  金:国家发改委重大高科技产业化项目;项目编号:发改办高技[2007]2456号

摘  要:随着近些年来锂离子动力电池的广泛应用,作为生产锂离子电池关键设备的检测系统也成为新的研究热点。但由于系统中大量非线性元件的使用,使得设定基准、采样信号和实际的测量值之间存在较大误差。为了减小干扰、提高数据传输准确性和控制精度,必须对传送的数据进行处理。人工神经网络以其任意非线性函数的任意逼近能力和自学习能力,在控制领域内得到了广泛的应用。用人工神经网络对数据进行处理,修正系统误差。结果表明,经神经网络处理后的采样数据检测精度大幅度提高,为提高电池生产质量提供了可靠保证。In recent years, lithium-ion electric vehicle battery has been more and more widely used, as a key equipment of Li-ion battery production, battery testing system has become a new research hotspot. Because the use of many nonlinear elements in this system, the setting reference and sampling data were distorted during the data transmission. Aiming at reducing the interference and enhancing controlling accuracy, the data should to be processed. BP neural network with excellent nonlinear approximation and self-learning ability is widely applied to various fields. In order to process the transmitting data and correcting the systematic errors, A 3 --layer BP neural network was adopted in this paper.The testing results show that the network is easy to realize, the forecast data of which is high in accuracy, and thus is better in reducing the distortion of the sampling data.

关 键 词:BP神经网络 锂离子电池 电池检测 

分 类 号:TH216.1[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象