检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子科技大学,四川成都610054 [2]中国电子科技集团公司第十研究所,四川成都610036
出 处:《西南民族大学学报(自然科学版)》2009年第5期1072-1076,共5页Journal of Southwest Minzu University(Natural Science Edition)
摘 要:传统的偏差配准技术多基于球极投影,当传感器距离较远时,给配准结果引入一定的偏差,使用地心地固(ECEF)坐标系,以一个传感器为融合中心,提出了多传感器动态偏差的估计模型,能较好地解决了远距离偏差估计问题,由于的最小二乘法和广义最小二乘法不能满足实时动态系统配准,提出利用序惯卡尔曼滤波算法实现动态系统偏差估计,通过仿真试验说明该模型和算法能有效地进行传感器动态偏差估计.Sensor registration is used to system bias estimation and compensation by means of measurements of multi-sensors to spatial common target. Some classical registration algorithms are all based on the stereographic projection, which introduce errors to the registration of the long distance sensors. In this work, we establish multi-sensor dynamic system bias estimation model, which is based on coordinate system of ECEF and selecting a senor as data processing center. This new approach solves the problem of registration between the long distance sensors. Least squares and generalized least squares registration algorithm can't do competent real time to dynamical bias registration. We suggest that the sensor bias estimates are obtained dynamically by using sequential process of Kalman filter, the result shows it can solve the registration problem effectively.
关 键 词:地心地固坐标 配准 序惯卡尔曼滤波 动态系统偏差
分 类 号:TP212.9[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117