隐核最小二乘分类器在故障诊断中的应用  

Hidden Kernel Based Least Square Classifier for Fault Diagnosis

在线阅读下载全文

作  者:陈国华[1] 蓝玉龙[2] 

机构地区:[1]广西电力职业技术学院电力工程系,广西南宁530007 [2]广西师范大学计算机科学与信息工程学院,广西桂林541004

出  处:《计算机仿真》2009年第9期153-155,280,共4页Computer Simulation

基  金:广西自然科学基金项目(桂科自0832074)

摘  要:作为一种基于正定核的学习方法,传统支持向量机(Support Vector Machine,SVM)能较好地解决小样本、非线性、过学习、维数灾和局部极小等问题,从而广泛应用于模式识别、回归估计等领域。当前,核方法及其在故障诊断中的应用引起了人们的广泛重视并成为研究热点。为解决传统支持向量对核函数正定性的限制及求解速度不高的缺陷,通过引入最小二乘支持向量机分类算法提高学习速度,采用隐核特征映射技术实现核函数的进一步扩展,提出了一种新的隐核最小二乘分类器(HKLSC)算法。将其应用于实际工业过程的故障诊断中并根据采集的滚动轴承数据进行了仿真。结果表明,该隐核分类器具有很好的故障诊断性能,为故障诊断提供了一种新的有效途径。As a general positive kernel - based learning machine, Support Vector Machine ( termed SVM) can solve the problems such as small samples, nonlinear, over fitting, curse of dimensionality and local minima, and it has been widely used in pattern recognition, regression estimation, etc. Currently, kernel - based learning method and its application have attracted more and more researchers and become a new active area in the field of fault diagnosis. However, the standard SVM is basically restricted to static problems, due to the fact that it is a very stringent requirement of positive kernel function and its high computational complexity. By combining the advantages of traditional least square SVM classifier and the extension of kernel via hidden kernel map method, a novel hidden kemel based least square classifier (termed HKLSC) is presented for fault diagnosis of industrial process in this paper. Numerical experiments of rolling bearing are given to illustrate the effectiveness of the proposed method , and the result shows that it might offer a new opportunity in the area of fault diagnosis.

关 键 词:支持向量机 隐核函数 分类 故障诊断 

分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象