检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西华大学数学与计算机学院,四川成都610039
出 处:《西华大学学报(自然科学版)》2009年第5期70-74,共5页Journal of Xihua University:Natural Science Edition
摘 要:阐述了边缘法、骨架法以及笔画法的方向特征提取算法的基本思想以及支持向量机(SVM)基本原理,采用SVM对所述特征提取技术分别得到的特征样本进行分别识别,正确识别率都达到90%以上。然后在时间效率、识别率以及汉字书写风格对特征提取算法的影响三方面的的对比分析基础上,得出笔画特征提取法是本文所述几种特征提取方法中时间效率最高(平均识别时间1.54ms),正确识别率最高(达96.6%)的特征提取方法。This paper introduces several directional features extraction approaches, such as meshing methods including edge approach, framework approach and stroke approach for handwritten Chinese character recognition, and analyzes the principle of SVM (Support Vector Machine). SVM method is applied to respective feature extracted by every feature extraction approach mentioned above and the correct rate of the recognition is satisfactory (more than 90% ). At last, on the basis of comparison and analysis of several feature extraction approaches, the conclusion is drawn that the best approach is Stroke-based directional feature extraction in terms of its correct recognition rate (96.6%) and average recognition time ( 1.54ms per character) among these feature extraction approaches.
分 类 号:TP319[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15