检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华北电力大学电气与电子工程学院,河北保定071003 [2]华北电力大学科技学院,河北保定071051
出 处:《华北电力大学学报(自然科学版)》2009年第5期73-76,共4页Journal of North China Electric Power University:Natural Science Edition
摘 要:说话人识别系统通常是将在安静的环境下训练得到的参数应用于实际环境中。如果实际环境也是安静的,则说话人识别系统可以令人满意地工作。然而,当实际环境中有噪声存在时,说话人识别系统性能急剧下降。为了让说话人识别系统在安静的环境和有噪声的环境中都获得令人满意的工作性能,研究了一个将支持向量机(SVM)在矢量量化(VQ)系统上进行二次识别来提高说话人识别率的方法。通过引入阈值自适应,从而提高系统性能。实验表明,在噪声环境下,与VQ,SVM识别方法相比,此方法在对识别速度影响很小的情况下可以使识别率明显提高。此方法具有良好的应用前景和进一步研究的价值。Speaker recognition systems worked in practical environments using parameters train in quiet environments. The system performance was satisfactory when the environment was also quiet, but degraded quickly in noisy environments A two - level - architecture recognition method combining VQ and SVM was propce, ed so that the recognition system could work well both in quiet and noisy environments. A threshold was adopted to improve the performance and of the system. The result of the experiment shows that compared with the VQ and SVM recognition method the proposed method could highly improve the recognition rate with little impact on the running speed. It has a good application prospect and worth to research further more.
分 类 号:TN912.3[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28