机构地区:[1]State Key Laboratory of Powder Metallurgy,Central South University [2]College of Mechanical and Electrical Engineering,East China Jiaotong University
出 处:《中国有色金属学会会刊:英文版》2009年第5期1146-1150,共5页Transactions of Nonferrous Metals Society of China
基 金:Project(2006CB600904)supported by the National Basic Research Program of China
摘 要:Composite felts reinforced by both SiC nano-fibers(SiC-NFs)and carbon fibers were prepared at 1 273 K using Ni granules as catalyzers with different deposition time.SiC-NFs were deposited on the surface of the carbon fibers in situ by catalytic chemical vapor deposition(CCVD).The phase,microstructure and morphology of the fibers after electroplating and deposition were characterized by XRD,SEM and TEM.The results show that the SiC-NFs produced by CCVD are composed of single crystal of β-SiC.It is found that smaller nano-granules are more active as catalyzers.The resulting SiC-NFs appear more spindle-like and have a more homogeneous dispersion.The mass change of the samples before and after deposition shows that using more Ni granules results in a faster growth velocity of SiC-NFs.With the same electroplating time,the growth velocity of the SiC-NFs first increases and then decreases.At around 4 h,it reaches the maximum growth velocity,and it becomes nearly constant at around 8 h.After 8 h, the stable growth velocity of the electroplated Ni samples is faster than that of the conventional sample produced without catalyzers, because the SiC-NFs can improve the specific surface area and the activity of the surface.Composite felts reinforced by both SiC nano-fibers (SiC-NFs) and carbon fibers were prepared at 1 273 K using Ni granules as catalyzers with different deposition time. SiC-NFs were deposited on the surface of the carbon fibers in situ by catalytic chemical vapor deposition(CCVD). The phase, microstructure and morphology of the fibers after electroplating and deposition were characterized by XRD, SEM and TEM. The results show that the SiC-NFs produced by CCVD are composed of single crystal of β-SIC. It is found that smaller nano-granules are more active as catalyzers. The resulting SiC-NFs appear more spindle-like and have a more homogeneous dispersion. The mass change of the samples before and after deposition shows that using more Ni granules results in a faster growth velocity of SiC-NFs. With the same electroplating time, the growth velocity of the SiC-NFs first increases and then decreases. At around 4 h, it reaches the maximum growth velocity, and it becomes nearly constant at around 8 h. After 8 h, the stable growth velocity of the electroplated Ni samples is faster than that of the conventional sample produced without catalyzers, because the SiC-NFs can improve the specific surface area and the activity of the surface.
关 键 词:碳纤维增强 镍催化剂 生长速度 纳米纤维 SIC 催化化学气相沉积 心脑血管疾病 沉积时间
分 类 号:TB383.1[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...