检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学雷达信号处理重点实验室,西安710071
出 处:《电子与信息学报》2009年第9期2264-2268,共5页Journal of Electronics & Information Technology
基 金:教育部长江学者和创新团队支持计划(IRT0645);国家自然科学基金(60772140)资助课题
摘 要:针对大多文献中假设合成孔径雷达(SAR)数据服从单模分布带来的问题,该文提出改进的子类判决分析(ICDA),它假设SAR目标数据服从更合理更实际的多模分布。首先采用快速全局k-均值聚类算法找到每类目标的子类划分,然后基于子类判决分析(CDA)准则寻找最优的投影矢量,使得投影后不同类别的子类样本之间距离最大而每个子类内部的样本散布最小。用美国运动和静止目标获取与识别(MSTAR)计划录取的SAR地面静止目标数据的实验结果表明,ICDA可获得较好的对真实目标的分类性能和对干扰目标的拒判能力。In many literatures, Synthetic Aperture Radar (SAR) data is usually supposed to obey the unimodal distribution, unsuitable in the applications. To overcome the limitation, an Improved Clustering-based Discriminant Analysis (ICDA) method is proposed, which assumes the distribution of each class for SAR data is multimodal, a more reasonable and practical assumption. The detailed procedure of ICDA is to first partition each class of the SAR data into multiple clusters via the fast global k-means clustering algorithm, and then try to find the projection vectors such that the projections of every pair of clusters from different classes are well separated while the within-cluster scatter is minimized. Experimental results performing on SAR ground stationary targets based the Moving and Stationary Target Acquisition and Recognition (MSTAR) public database show that ICDA has better classification capabilities of three true objects classes and rejection capabilities of two confusers classes.
关 键 词:合成孔径雷达 自动目标识别 子类判决分析 快速全局k-均值聚类算法
分 类 号:TN957.52[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117