基于量子粒子群优化算法的水电系统经济运行  被引量:12

Economic Operation of Hydropower System Based on Quantum Particle Swarm Optimization Algorithm

在线阅读下载全文

作  者:张智晟[1] 董存[2] 吴新振[1] 

机构地区:[1]青岛大学自动化工程学院,山东省青岛市266071 [2]国家电力调度通信中心,北京市西城区100031

出  处:《电网技术》2009年第18期68-72,共5页Power System Technology

基  金:山东省教育厅科技计划项目(J07WJ10)

摘  要:首次将量子粒子群优化算法用于水电系统经济运行研究中。该算法是量子理论与粒子群算法的融合,在粒子编码过程中引入了量子的态矢量表达,并将量子比特的概率幅表示应用于粒子的编码,使得粒子可以表达为多个态的叠加;在粒子更新操作过程中,利用量子逻辑门实现了粒子的演化,具有比常规粒子群算法更好的目标优化性能。仿真结果证实该算法可有效解决水电机组经济运行问题。性能对比显示,该算法求得的解优于常规粒子群算法及其它优化算法所求得的解。It is the first time to apply quantum particle swarm optimization (QPSO) algorithm to research on hydropower system operation. QPSO algorithm merges quantum theory with particle swarm optimization (PSO), in which the state vectors expression of quantum is led into the coding of particles and the probability amplitude expression of quantum bit (q-bit) is applied to the coding of particles, thus one particle can be expressed as the superposition of multi-states; in the operation of particle updating the evolution of particles can be implemented by quantum logical gate, so its objective optimization performance is better than that of conventional particle swarm algorithm. Simulation results show that the proposed algorithm can effectively solve the economic operation of hydropower generating units. Performance comparison shows that the solution from the proposed method is better than those from conventional particle swarm algorithm and other optimization algorithm.

关 键 词:水电系统 经济运行 量子粒子群优化算法 

分 类 号:TM712[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象