检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苏力争[1] 齐乐华[1] 周计明[1] 王振军[1] 李贺军[2]
机构地区:[1]西北工业大学机电学院,西安710072 [2]西北工业大学材料科学与工程学院,西安710072
出 处:《塑性工程学报》2009年第5期5-9,29,共6页Journal of Plasticity Engineering
基 金:国家自然基金资助项目(50575185);航空科学基金资助项目(05G53048);陕西省自然基金资助项目(2005E23)
摘 要:为改善液固挤压复合材料成形过程中金属的流动均匀性,减少制件的内部损伤缺陷,基于人工神经网络及遗传算法,采用改进的混合GA-BP算法建立了设计参数与控制目标的非线性映射关系。通过对样本集的学习,初步建立了液固挤压工艺组合参数知识库,将网络预测值与实验值进行对比,其最大相对误差不超过0.79%,说明采用GA-BP混合算法建立的预测模型具有较高的预测精度。利用所建立的预测模型,分析了模具参数和工艺参数组合对制件变形均匀性的耦合作用,为液固挤压工艺的综合设计与优化提供了理论依据。In order to control deformation uniformity of composite in the forming process of liquid-solid extrusion and reduce inner damaging defects of products. Based on artificial neural network (ANN) technique and genetic algorithm (GA), the nonlinear mapping relation between design variables and objective function was proposed and established by the modified GA-BP algorithm. The simulation results of FEM called virtual samples were selected as the networks training samples. By training the sample, the knowledge base of the muti-parameters for the liquid-solid extrusion was set up. Comparing with the experimental results, the largest relative error between the actual output value of the network and the experimental data is 0.79 percent. It proves that the forecast model established using GA-BP hybrid algorithm has a higher accuracy. The influences of main process parameters and structures parameters had been studied on the deformation uniformity using the predictive function of the model. They are good instructions for the design and optimization of the liquid-solid extruding composites process.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117