检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学仪器科学与光电工程学院,北京100191
出 处:《北京航空航天大学学报》2009年第9期1091-1094,共4页Journal of Beijing University of Aeronautics and Astronautics
基 金:中国地质调查局资助项目(1212010816033);国家863计划资助项目(2008AA121102);长江学者和创新团队发展计划资助项目(IRT0705)
摘 要:光谱解混是高光谱遥感定量化的关键,提出了一种基于光谱信息散度和光谱混合分析的光谱解混改进算法(SID-SMA,Spectral Information Divergence-Spectral Mixed A-nalysis).以光谱信息散度判定最优端元子集,端元选择时采用端元的初选和二次选择来提高端元选择的精度,得到较小的丰度估计误差.通过光谱库模拟数据的结果可以看出,SID-SMA的端元选择精度和丰度估计精度要优于其他算法,当信噪比为100∶1时,算法端元选择正确率达到了99.8%,29个端元的丰度估计总误差小于0.1,并且算法的速度较快.Spectral unmixing is a key issue of quantitative remote sensing. An advanced spectral unmixing algorithm based on per-pixel optimal endmembers selection named spectral information divergence-spectral mixed analysis (SID-SMA) was proposed. It determined the optimal endmembers subset using the criteria of SID and selected endmembers through two selection steps which could improve the precision of endmember selection and obtain small abundance estimation error. The results of simulated data from spectral library indicate that SID-SMA has better precision of endmember selection and abundance estimation. When the signal-tonoise ratio (SNR) is 100: 1, the correct proportion of endmember selection arrives at 99.86% and total abundance error of 29 endmembers is less than 0.1 and the speed of SID-SMA is much faster.
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63