检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:古丽.加帕尔[1,2] 陈曦[1,2] 马忠国[1,2] 常存[1,2]
机构地区:[1]中国科学院新疆生态与地理研究所,新疆乌鲁木齐830011 [2]中国科学院绿洲生态与荒漠环境重点实验室,新疆乌鲁木齐830011
出 处:《中国沙漠》2009年第6期1153-1161,共9页Journal of Desert Research
基 金:国家自然科学基金项目(4080114640730633)资助
摘 要:研究以位于极端干旱区的塔里木河干流中下游地区为例,基于Landsat TM影像,结合决策树分类、几何光学模型与光谱角匹配,解决混合像元信息分解,实现干旱区稀疏荒漠河岸林类别识别。首先从遥感视角的角度,将地物分解为目标和背景,提出塔里木河干流荒漠河岸林植被分类系统;其次以多变量决策树法将非荒漠植被信息剔除,采用几何光学模型模拟各类荒漠植被的像元光谱,最后以光谱角匹配的方法将荒漠植被进一步进行分解,得到塔里木河干流中下游地区典型研究区的植被分类专题图,分类精度结果表明:基于混合像元分解与几何光学模型的分类方法总精度达到了79.43%,Kappa系数为0.718,表明分类质量良好。Taking the desert riparian forest belts along both riversides of the middle and lower reaches at the Tarim River Basin as the research object and making use of Landsat TM data, a new classify method of combining decision tree, Geometric Optical models and Spectral Angle Mapper is introduced to identify the desert riparian forest sort in extreme arid region. Firstly, a new classification system of desert riparian forest was brought forward, dividing the target into object and background from view of remote sensing. Secondly, the non-desert vegetation information was masked off by using the method of decision tree; the spectrum of the desert riparian forest pixels were simulated with the pure Geometric Optical and Geometric Optical- Radiative Transfer model, then to map the vegetation of the study area using Spectral Angle Mapper based on the pixel spectrum simulated. The results indicate that the quality of classification is good, with the accuracy coefficient to 79.43 % and the Kappa coefficient to 0. 718.
关 键 词:极端干旱区 荒漠稀疏河岸林 决策树 几何光学模型 光谱角填图
分 类 号:X87[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3