检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈暮紫[1] 马宇超[2] 王博[2] 陈浩[2] 唐跃[2] 陈敏[2] 杨晓光[2]
机构地区:[1]中国科学技术大学统计与金融系,安徽合肥230026 [2]中国科学院数学与系统科学研究院,北京100080
出 处:《中国管理科学》2009年第5期1-8,共8页Chinese Journal of Management Science
基 金:国家973计划(No.2007CB814902);国家自然科学基金资助项目(70425004)
摘 要:本文依托Loss Metric数据库,对非极端回收不良贷款的回收率预测模型进行了研究。文章通过对非极端回收不良贷款的回收率进行Beta-正态变换和Logit变换,结合影响不良贷款回收率的众多因素,进行了从简单到复杂、从单笔贷款债务人到多笔贷款债务人的逐级建模,并剖析了影响回收率的各个因素。实证结果表明,单笔贷款债务人的回收率模型可作为多笔贷款债务人回收率预测的基准;从单笔贷款债务人模型中可以更直观的分析各个不同的变量对回收率的影响。Using the data from Lossmetric, this paper tries to build forecasting models for non-performing loans of non-extreme recovery. The paper first uses beta-normal transformation and logit transformation to process recovery rates, and gives an individual analysis for each impacting factor on recovery rate. Then the paper proceeds a model-establishing process from simple model to complex model, from single debt obligor's model to multi-debt obligor's model, aiming at a comprehensive investigation on the impacting factors. Empirical results show that both the single debt obligor's model and the multi-debt obligor's model have good predicting power, moreover the single debt obligor's model itself can reflect the relationship between the recovery rate and the impacting factors, and it can be used as the foundation of multi-debt obligor' s model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.41