检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北电力大学能源与机械工程学院,吉林吉林132012 [2]东北电力大学自动化工程学院,吉林吉林132012
出 处:《化学工程》2009年第10期32-35,共4页Chemical Engineering(China)
基 金:吉林省科技发展计划资助项目(20040513)
摘 要:为研究垂直上升管中的气液二相流的流型,利用自制的多电导探针的测量系统采集了4种典型流型的电导波动信息。根据小波包变换能将电导波动信号按任意时频分辨率分解到不同频段的特性,对其进行了3层小波包分解后并计算了各个频段的信息熵特征向量,并作为特征参数输入到E lm an神经网络进行训练,实现了与神经网络相结合流型的智能识别。研究结果表明,该方法能够很准确地识别出4种流型,且提取特征比较方便,从而为流型识别提供了一种新的有效方法。To study the flow regime of gas-liquid two-phase in vertical upward pipe, the conductance fluctuation information of four typical flow regimes was collected by measuring system with self-made multiple conductance probes. Since the wavelet packet transform has the characteristic of decomposing conductance fluctuation signals to any frequency bands, the collected conductance fluctuation signals were decomposed into three-layer wavelet packets, and the information entropy eigenvectors in various frequency range were calculated, then Elman neural network was trained using the eigenvectors as feature parameters and the flow regime intelligent identification was realized. The results show that such method can well identify the four flow regimes, and can abstract characters conveniently. Therefore, a kind of powerful approach is supplied for the identification of flow regimes.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.74.222