检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Physics and Technology, Wuhan University,Wuhan 430072, Hubei, China [2]School of Physics, China University of Science andTechnology, Hefei 230026, Anhui, China
出 处:《Wuhan University Journal of Natural Sciences》2009年第6期505-510,共6页武汉大学学报(自然科学英文版)
基 金:Supported by the National Natural Science Foundation of China (10775105)
摘 要:Based on the method of Hirota's bilinear derivative transform, the derivative nonlinear Schrodinger equation with vanishing boundary condition has been directly solved. The oneand two-soliton solutions are given as two typical examples in the illustration of the general procedures and the concrete cut-off technique of the series-form solution, and the n-soliton solution is also attained by induction method. Our study shows their equivalence to the existing soliton solutions by a simple parameter transformation. The methodological importance of bilinear derivative transform in dealing with an integrable nonlinear equation has also been emphasized. The evolution of one and two-soliton solution with respect to time and space has been discussed in detail. The collision among the solitons has been manifested through an example of two-soliton case, revealing the elastic essence of the collision and the invariance of the soliton form and characteristics.Based on the method of Hirota's bilinear derivative transform, the derivative nonlinear Schrodinger equation with vanishing boundary condition has been directly solved. The oneand two-soliton solutions are given as two typical examples in the illustration of the general procedures and the concrete cut-off technique of the series-form solution, and the n-soliton solution is also attained by induction method. Our study shows their equivalence to the existing soliton solutions by a simple parameter transformation. The methodological importance of bilinear derivative transform in dealing with an integrable nonlinear equation has also been emphasized. The evolution of one and two-soliton solution with respect to time and space has been discussed in detail. The collision among the solitons has been manifested through an example of two-soliton case, revealing the elastic essence of the collision and the invariance of the soliton form and characteristics.
关 键 词:SOLITON nonlinear equation derivative nonlinear Schrodinger equation Hirota's method bilinear derivative transform
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28