检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《医学分子生物学杂志》2009年第5期431-435,共5页Journal of Medical Molecular Biology
基 金:上海市重点学科(第三期)建设项目(No.S30501)
摘 要:目的利用已有的研究结果和数据,采用多目标评价方法建立乳腺癌易感基因评价模型,对与已知乳腺癌基因关系密切的其它基因进行分析和排序,并给出结果的网络表达模式。方法通过分析已有的文献,并利用有关的基因数据库和已有文献中的数据,提炼出乳腺癌易感基因的多目标评价体系,构建基于加权和法的乳腺癌易感基因评价模型,并利用Cytoscape软件进行评价结果计算和评价结果的网络模式表达。结果利用多目标模型所得到的评价结果,与已有的研究结果一致。其中,乳腺癌易感基因TopBP1排名第二,已知乳腺癌候选易感基因HMMR排名第六。结论文章提出的多目标评价模型能够准确评价被选基因与乳腺癌易感性之间的关系,所提出的评价方法与相关软件结合使用,将成为癌症易感基因研究方面有效的分析方法和途径。Objective Based on previous results and data, this paper was proposed to establish an evaluation model by means of multi-criteria evaluation, in order to analyze and rank breast cancer susceptible genes which are known to be closely related to breast cancer genes and provide their network expression model. Methods By analysis of available literatures and by use of gene database, we selected the evaluation criteria for identifying breast cancer susceptible genes and then set up the evaluation model using the data from online supplementary table provided by literatures and gene database. After that, the evaluation results and their network expression were processed using Cytoscape software. Results The obtained gene ranking results from our multi-criteria model were consistent with previous researches. In this model, the breast cancer susceptible gene TopBP1 was secondly ranked, and the HMMR gene, a known candidate of breast cancer susceptible gene, was ranked at the sixth position. Conclusion s Our established multi-evaluation model can objectively and correctly represent the complex relationship between genes and breast cancer susceptibility. In combination with relative software programs, this method is a potent tool for biomedical analysis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117