检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《兵工学报》2009年第10期1368-1374,共7页Acta Armamentarii
摘 要:利用支持向量机(SVM)进行机械故障诊断时,分类效果与核函数紧密相关。但核函数的选取一直缺少明确的理论指导,而且由于学习过程中常采取近似计算,致使分类结果远非期望水平。本研究首先利用匀幅、互信息指标构造特征向量;而后基于自适应助推法得到一系列基本SVM;并基于多样性准则对这些基本SVM进行筛选,最后对满足条件的基本SVM加权得到集成SVM。将集成SVM应用到某型坦克柴油机的故障诊断中,性能评价及分类结果表明,集成SVM比单一SVM具有更好的分类性能,故障诊断准确率更高。When mechanical fault is diagnosed by support vector machine (SVM), the classification effect is closely related to the kernel function. As selecting of the kernel function always lacks theoretical guidance, and approximate computation is adopted in learning course, it led to that the classification result is far from being the expected level. The eigenvector was constructed by mutual information and even amplitude indexes; a series of basic SVM was got by AdaBoost; the ensemble SVM was got by screening the basic SVM with rule of diversity, and weighting the basic SVM which satisfied the diversity requirement. After the ensemble SVM is put into fault diagnosis of diesel engine of tank, the evaluation of performance and classification results denote that the ensemble SVM has better classification performance and a higher classification success rate than single SVM.
分 类 号:TH17[机械工程—机械制造及自动化] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117