基于神经网络信息融合的印刷体字符识别研究  

Research of printed character recognition based on neural network information fusion

在线阅读下载全文

作  者:张宇[1] 

机构地区:[1]华北计算机系统工程研究所,北京100083

出  处:《微型机与应用》2009年第21期22-24,28,共4页Microcomputer & Its Applications

摘  要:针对印刷体字符识别,提出一种基于神经网络信息融合的方法。在对待识别目标提取特征后,分别采用2种反向传播算法的改进算法和遗传算法构造神经网络分类器模型,并进行网络的训练和识别工作。通过实验数据着重分析和比较了3种算法的特点,将此3种分类器得出的分类结果进行决策级的信息融合,最终得出识别结果。实验结果表明,此方法简单可行,具有较高的鲁棒性和识别率。Considering the status of the printed character recognition, this paper proposed a new approach which based on the neural network information fusion. After extracting the features of the target, using two back-propagation algorithm and genetic algorithms to build the neural network models to train and recognize the targets. Analyzes and compares the characteristic of the three algorithms through experiment data, take identification results from the three classifiers to the decision-making level information fusion and get the final results. The experiments results show that this method is simple and feasible with high robustness and recognition rate.

关 键 词:神经网络 反向传播算法 遗传算法 信息融合 

分 类 号:TP391.43[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象