检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京科技大学
出 处:《金属矿山》2009年第11期18-20,24,共4页Metal Mine
基 金:国家安全生产科技发展计划项目(编号:05-376);"十一五"国家科技支撑计划项目(编号:2008BAB32B01);国家高科技研究发展计划(863计划)项目(编号:2008AA062101)
摘 要:针对BP神经网络算法存在局部极小问题、收敛对初值敏感问题及收敛速度慢问题,首次采用了一种新的神经网络算法,即样条函数神经网络算法,在破碎带工程围岩稳定性影响因素分析的基础上,来研究在破碎带工程围岩超前锚杆加固方式的优选问题。研究表明,超前锚杆拱部的支护参数在间距为0.4~0.6m,排距为0.4~0.5m,外插角10°~20°,锚杆直径在20~22mm的效果最佳。由此来研究锚杆超前支护的参数设置及如何提高岩体的稳固性,为破碎带岩层施工安全和局部强化支护提供理论依据。Due to such problems as local minima, slow convergence, and dependence on initialized values arising by the back propagation (BP) neural network algorithms, it is the first time to adopt this new algorithm called the spline weight function artificial neural network. Based on the analysis on effects of stability in fracture surrounding rocks, the neu- ral network model is adopted to select an optimal parameters in forepoling bolt for the fractures. The study shows that the supporting parameters with 0.4 - 0.6 m in space, 0.4 -0.5 m in rank, 10° - 20° at angle and 20 - 22 mm in diameter are optimal for forepoling bolt. Based on this, how to select the parameter for forepoling bolt and how to improve the stability of rock body can be investigated, then providing a theoretical basis for safety construction and supporting strengthening in local place for the fracture rocks.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.52.224