检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]同济大学土木工程防灾国家重点实验室,上海200092
出 处:《华中科技大学学报(自然科学版)》2009年第11期111-114,共4页Journal of Huazhong University of Science and Technology(Natural Science Edition)
基 金:国家自然科学基金重点资助项目(50538050);国家高技术研究发展计划资助项目(2006AA11Z108)
摘 要:应用非线性静风稳定分析理论,结合平均风分解法,提出了斜风作用下大跨度悬索桥非线性静风稳定分析方法.综合考虑静风荷载非线性和结构自身非线性,编制了相应的分析程序.以某三塔双主跨悬索桥为对象,进行了不同风偏角和不同风攻角下的非线性静风稳定全过程分析.结果表明:静风失稳最低临界风速发生在非0°初始偏角情形下,即斜风对大跨度悬索桥静风稳定性可能更不利;在斜风作用下,双主跨悬索桥的来流跨首先进入失稳状态.A method to analyze the nonlinear aerostatic stability of long-span bridges under yawed wind was put forward by using the nonlinear aerostatic stability theory and the method of mean wind decomposition. The corresponding code was developed considering static wind load nonlinearity and structural nonlinearity. Considering a suspension bridge with three towers and two main spans, the full range aerostatic instabilities were analyzed under wind in different attack angles and yawed angles. The result indicates that the lowest critical wind speed of aerostatic instability is gained when the initial yawed angle isn't 0°, which suggests yawed win is disadvantage to aerostatic stability of a long-span suspension bridge. The result also shows that the span in the upstream goes into instability first, and the reason of this phenomenon was analyzed.
关 键 词:大跨度悬索桥 斜风 静风稳定 非线性 风偏角 风攻角
分 类 号:U448.25[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.68