Self-converse Large Sets of Pure Mendelsohn Triple Systems  被引量:1

Self-converse Large Sets of Pure Mendelsohn Triple Systems

在线阅读下载全文

作  者:Jian Guo LEI Cui Ling FAN Jun Ling ZHOU 

机构地区:[1]Institute of Mathematics, Beijing Jiaotong University, Beijing 100044, P. R. China [2]Institute of Mathematics, Hebei Normal University, Shijiazhuang 050016, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2009年第10期1665-1680,共16页数学学报(英文版)

基  金:Supported by National Natural Science Foundation of China (Grant No.10771051)

摘  要:A Mendelsohn triple system of order v (MTS(v)) is a pair (X,B) where X is a v-set and 5g is a collection of cyclic triples on X such that every ordered pair of X belongs to exactly one triple of B. An MTS(v) (X,B) is called pure and denoted by PMTS(v) if (x, y, z) ∈ B implies (z, y, x) ∈B. A large set of MTS(v)s (LMTS(v)) is a collection of v - 2 pairwise disjoint MTS(v)s on a v-set. A self-converse large set of PMTS(v)s, denoted by LPMTS* (v), is an LMTS(v) containing [ v-2/2] converse pairs of PMTS(v)s. In this paper, some results about the existence and non-existence for LPMTS* (v) are obtained.A Mendelsohn triple system of order v (MTS(v)) is a pair (X,B) where X is a v-set and 5g is a collection of cyclic triples on X such that every ordered pair of X belongs to exactly one triple of B. An MTS(v) (X,B) is called pure and denoted by PMTS(v) if (x, y, z) ∈ B implies (z, y, x) ∈B. A large set of MTS(v)s (LMTS(v)) is a collection of v - 2 pairwise disjoint MTS(v)s on a v-set. A self-converse large set of PMTS(v)s, denoted by LPMTS* (v), is an LMTS(v) containing [ v-2/2] converse pairs of PMTS(v)s. In this paper, some results about the existence and non-existence for LPMTS* (v) are obtained.

关 键 词:large set Mendelsohn triple system CONVERSE good large set partitionable Mendelsohn Candelabra system 

分 类 号:O157[理学—数学] O157.2[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象