蛋白质指纹图谱技术在肺癌分子标志物研究中的应用  被引量:1

Application of SELDI-TOF-Ms technology in research of molecular markers of lung cancer

在线阅读下载全文

作  者:沙慧芳[1] 叶剑定[2] 孙强玲[1] 杨晓华[1] 包国良[1] 冯久贤[1] 龚乐罗[1] 

机构地区:[1]上海交通大学胸科医院基础研究室,上海200030 [2]上海交通大学胸科医院放射科,上海200030

出  处:《上海交通大学学报(医学版)》2009年第10期1178-1181,1195,共5页Journal of Shanghai Jiao tong University:Medical Science

基  金:上海市市级医院新兴前沿技术联合攻关项目(SHDC12007103)~~

摘  要:目的分析肺癌与肺部良性疾病及正常人血浆蛋白质指纹图谱的变化,建立肺癌血浆标志物诊断模型。方法应用蛋白质指纹图谱(SELDI-TOF-Ms)技术检测108例肺癌患者、40例肺部良性疾病患者和22例正常人血浆标本,采用层次聚类分析和主成分分析建立决策树模型,应用该模型盲筛21例肺部良性疾病和47例Ⅰ期肺癌。结果筛选到23个差异蛋白峰(P<0.001)。盲筛分析显示决策树模型诊断敏感性和特异性分别为72.34%和71.43%,阳性预测值和阴性预测值分别为85.0%和78.95%,诊断正确性为72.06%。结论应用SELDI-TOF-Ms技术初步建立的蛋白质模型为肺癌的早期诊断提供了新的技术平台。Objective To explore the changes of proteomic spectra from plasma of patients with lung cancer or benign lung diseases and health controls in order to establish a primary diagnosis model of lung cancer. Methods The proteomic spectra from plasma of 108 patients with lung cancer,40 patients with benign lung diseases and 22 healthy individuals were analysed by surface-enhanced laser desorption/ionization time of flight mass spectrometry(SELDI-TOF-MS).The best decision tree model was established by cluster analysis and principal component analysis.Then the model was blindly validated by the protein of 21 patients with lung benign diseases and 47 patients with stage I lung cancer. ResultsTwenty-three significantly differentially expressed protein peaks were successfully detected(P0.001).Blinded validation suggested that the accuracy for diagnosing lung cancer was 72.06%,the sensitivity and specificity were 72.34% and 71.43%,respectively,and the positive predictive value and negative predictive value were 85.0% and 78.95%,respectively. Conclusion SELDI-TOF-MS protein chip technology provides a new tool for the early diagnosis of lung cancer.

关 键 词:蛋白质指纹图谱 血浆 肺癌 蛋白质芯片 分子标志物 

分 类 号:R734.2[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象