检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆大学光电技术及系统教育部重点实验室,重庆400044
出 处:《光学学报》2009年第11期3000-3003,共4页Acta Optica Sinica
基 金:国家自然科学基金重点项目(90510020);教育部科研重点项目(108174)资助课题
摘 要:提出了一种将自适应正则化方法与非负支撑域递归逆滤波(NAS-RIF)算法相结合用于小波域的盲图像复原算法。该算法先对降质图像进行小波分解,得到了图像在不同子频段的信息。在各个子频段采用NAS-RIF算法进行复原。针对各个子频段内图像的频率和方向特性,分别引入了不同的正则化约束项。在各个子频段估计出噪声方差,提出了根据噪声方差和图像局部方差来选取正则化参数。分别对两幅模糊图像进行了仿真实验,复原结果取得的信噪比分别为19.66 dB和23.86 dB。实验结果表明,复原效果相对于空间自适应正则化方法有一定的提高。An improved nonnegativity and support constraints recursive inverse filtering (NAS-RIF) algorithm based on wavelet transform is presented to restore blind images. The degraded image is decomposed to obtain its wavelet coefficients in wavelet domain. The image's different frequency sub-bands are also obtained. Then, NAS-RIF algorithm is used to restore degraded image in each sub-bands, different regularization terms are used in different sub-bands. By estimating the noise variance in each sub-bands, the adaptive regularization parameters can be calculated through the local properties of the observed image and the noise variance. The two simulating experiments are made and high signal to noise ratios (SNR) of 19.66 dB and 23.86 dB are obtained. The experimental results show that the method given by authors is more efficient than traditional space-adaptive regularization method.
关 键 词:图像处理 盲目图像复原 非负支撑域递归逆滤波(NAS-RIF)算法 小波变换 正则化
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.151