机构地区:[1]Department of Medicine, Henan Tumor Hospital, Zhengzhou 450002, China [2]Cancer center of Zhengzhou University Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China [3]Department of Etiology and Carcinogenesis, Cancer Institute(Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
出 处:《Chinese Journal of Cancer Research》2009年第4期247-254,共8页中国癌症研究(英文版)
基 金:supported by the grants from State Key Basic Research"973"Programs of China(2002CB513101 and 2004BC518701)
摘 要:Objective: Despite platinum-based adjuvant chemotherapy has improved greatly patients' outcomes, drug resistance poses a major impediment to the successful use of such an effective agent. Metallothioneins(MTs) are known to play putative roles in cancer cell proliferation, apoptosis, differentiation, drug resistance and prognosis. The present studiy was to investigte the role of metallethioeinlH(MTIH) in cisplatin resistance of human non-small cell lung cancer(NSCLC) cell lines in vitro or its possible molecular mechanisms. Methods: MTIH mRNA expression in A549 and A549/DDP cells was detected by RT-PCR. A recombinant eukaryotic expression plasmid pcDNA3.1(-)-MT1H was constructed and transfected into A549 cells which express no MTIH. MT1H siRNA was transfected into A549/DDP cells which express MTIH highly. MTIH expression was detected by RT-PCR and Immunoblot. The chemosensitivity to cisplatin was assessed by MTT assay. Apoptosis rate was determined by Tunel and FCM. Bcl-2 and Bax were determined by immunohistochemistry. Results: MT1H mRNA was expressed in A549/DDP but not in A549. After transfection of MT1H, MT1H expression was enhanced and the chemosensitivity to cisplatin was decreased in A549 cells. Inversely, after transfection of MT1H siRNA, MT1H expression was decreased and the chemosensitivity to cisplatin was increased in A549/DDP. The apoptosis rate induced by cisplatin was increased and Bcl-2 was down-regulated but Bax showed little change in A549/DDP cells interferred with MT1H siRNA. Conclusion: MT1H overexpression can promote drug resistance in A549 cells . Down-regulation of MTIH interfered with siRNA can effectively reverses the drug resistance in A549/DDP cells by down-regulating the expression of Bcl-2 and increasing cisplatin induced apoptosis. SiRNA targeting MT1H combined with chemotherapy may be a very promising strategy for treatment of lung cancer.Objective: Despite platinum-based adjuvant chemotherapy has improved greatly patients' outcomes, drug resistance poses a major impediment to the successful use of such an effective agent. Metallothioneins(MTs) are known to play putative roles in cancer cell proliferation, apoptosis, differentiation, drug resistance and prognosis. The present studiy was to investigte the role of metallethioeinlH(MTIH) in cisplatin resistance of human non-small cell lung cancer(NSCLC) cell lines in vitro or its possible molecular mechanisms. Methods: MTIH mRNA expression in A549 and A549/DDP cells was detected by RT-PCR. A recombinant eukaryotic expression plasmid pcDNA3.1(-)-MT1H was constructed and transfected into A549 cells which express no MTIH. MT1H siRNA was transfected into A549/DDP cells which express MTIH highly. MTIH expression was detected by RT-PCR and Immunoblot. The chemosensitivity to cisplatin was assessed by MTT assay. Apoptosis rate was determined by Tunel and FCM. Bcl-2 and Bax were determined by immunohistochemistry. Results: MT1H mRNA was expressed in A549/DDP but not in A549. After transfection of MT1H, MT1H expression was enhanced and the chemosensitivity to cisplatin was decreased in A549 cells. Inversely, after transfection of MT1H siRNA, MT1H expression was decreased and the chemosensitivity to cisplatin was increased in A549/DDP. The apoptosis rate induced by cisplatin was increased and Bcl-2 was down-regulated but Bax showed little change in A549/DDP cells interferred with MT1H siRNA. Conclusion: MT1H overexpression can promote drug resistance in A549 cells . Down-regulation of MTIH interfered with siRNA can effectively reverses the drug resistance in A549/DDP cells by down-regulating the expression of Bcl-2 and increasing cisplatin induced apoptosis. SiRNA targeting MT1H combined with chemotherapy may be a very promising strategy for treatment of lung cancer.
关 键 词:METALLOTHIONEIN MT1H Non-small-cell lung cancer Drug resistance APOPTOSIS
分 类 号:Q782[生物学—分子生物学] S852.612[农业科学—基础兽医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...