检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王娜[1,2] 王克如[1,2] 谢瑞芝 赖军臣[1,2] 明博[1,2] 李少昆[1,2]
机构地区:[1]新疆兵团绿洲生态农业重点开放实验室/新疆作物高产研究中心,新疆石河子832003 [2]国农业科学院作物科学研究所/国家农作物基因资源与基因改良重大科学工程,北京100081
出 处:《中国农业科学》2009年第11期3836-3842,共7页Scientia Agricultura Sinica
基 金:国家“863”计划(2007AA10Z237和2006AA10Z207)
摘 要:【目的】利用计算机视觉技术实现玉米叶部病害的自动识别诊断。【方法】在大田开放环境下采集病害图像样本,综合应用基于H阈值分割、迭代二值化、图像形态学运算、轮廓提取等算法处理病害图像,抽取病斑,提取病害图像的纹理、颜色、形状等特征向量,采用遗传算法优化选择出分类特征,并利用费歇尔判别法识别普通锈病、大斑病和褐斑病3种玉米叶部病害。【结果】研究中提取了墒、相关信息测度、分形维数、H值、Cb值、颜色矩、病斑面积、圆度、形状因子等28个特征向量,利用遗传算法优选出H值、颜色矩、病斑面积、形状因子等4个独立、稳定性好、分类能力强的特征向量,应用费歇尔判别分析法识别病害,准确率达到90%以上。【结论】综合运用数字图像处理技术、图像纹理、颜色、形状特征分析方法、遗传算法、费歇尔判别分析方法可以有效识别基于田间条件下采集的病害图像,为田间开放环境下实现大田作物病虫害的快速智能诊断提供借鉴。[Objective] The recognition and diagnosis methods of main maize leaf diseases using machine vision were studied in this paper. [Method] The diseases pictures of different varieties or periods were taken in fields, methods of threshold segmentation based on hue, iteration binarization, image morphological operation and contour extraction were adopted for image processing and image segmentation, then the texture, color and shape features were extracted. Genetic algorithm was used to get approximate features. Finally Fisher discrimination analysis was applied to recognize main maize leaf diseases. [Result] In the research, 28 characters including energy, informationization measure, fractal dimension, hue, cb, color moment, disease spot area, rotundity, figure factor, and others were extracted, and four approximate features were selected from 28 primordial features. The results indicated that the precision of the three kinds of maize disease recognition was higher than 90%. [ Conclusion ] Disease image obtained in fields were recognized by the application of digital image processing technology, analysis of image texture, color and figure characters, genetic algorithm and Fisher discrimination analysis. It has provided a technical support for the automatic recognition of crop diseases and insets with disease image obtained in fields.
关 键 词:玉米 叶部病害 特征提取 遗传算法 费歇尔判别分析
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] O212.4[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222