检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《系统仿真学报》2009年第23期7577-7580,共4页Journal of System Simulation
基 金:江苏省自然科学基金(BK2007206)
摘 要:目前Internet网络中间节点拥塞控制问题在网络和控制理论界已获得了广泛关注。本文提出一种基于神经元自适应PID控制器的AQM算法,针对TCP/AQM系统模型,结合中间节点队列管理和显式拥塞指示机制(Explicit Congestion Notification,ECN)机制,采用梯度学习算法来在线调整基于神经元PID的AQM控制器参数,以实现标记/丢包概率的自适应调整,从而对网络拥塞程度作出及时响应,尤其在网络参数时变的情况下仍能保证良好的动态性能,并显著改善网络的服务性能(QoS)。最后通过NS-2仿真结果表明,该算法在队列稳定性、平均丢包率等性能方面要明显优于基于常规PID的AQM算法。Nowadays congestion control problem of the intermediate nodes in the Internet has received extensively attention in networking and control community.A novel adaptive PID(Proportional-Integral-Differential) controller based on single neuron for the problem of AQM was proposed.Considering a previously developed nonlinear dynamic model of TCP/AQM system and the queue management and explicit congestion notification(ECN) mechanism of intermediate nodes,the parameters of AQM controller were tuned online by using gradient-descent algorithm,and the probability of packet dropout was obtained adaptively to measure the degree of congestion in time,so that the quality of service(QoS) of network and the transient performance could be improved greatly especially when the network parameters are time-varying.Finally,the proposed algorithm was verified by using NS-2 simulator.The simulation results show that the integrated performance of this proposed controller is obviously superior to those of common PID controller especially on the queue stability and mean loss ratio.
关 键 词:主动队列管理(AQM) 拥塞控制 神经元 PID控制器 显式拥塞指示(ECN)
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222