检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋鹤兰[1] 张东枚[2] 李丽霞[2] 李筠[1] 曾慧韵 丁淑瑾[1] 赵曼丹[1] 骆婕[1]
机构地区:[1]广东药学院附属第一医院妇产科,广东广州510080 [2]广东药学院公共卫生学院,广东广州510310
出 处:《广东药学院学报》2009年第5期530-533,共4页Academic Journal of Guangdong College of Pharmacy
摘 要:目的探讨BP神经网络预测妊娠期糖尿病(GDM)胎儿出生体重的价值。方法将306例足月、单胎、无妊娠其它合并症及并发症的GDM孕妇随机分为训练组(200例,男女胎儿分别为106例、94例)和验证组(106例,男女胎儿分别为56例、50例)。训练组分别选取不同参数构建3个神经网络:(1)孕妇参数法:包括孕妇体重指数(BMI)、腹围、宫高、孕期增加体重、空腹血糖(FBS)、餐后2 h血糖(PBS)、糖化血红蛋白(GHbA1c)等7项参数作为输入节点;(2)胎儿参数法:用胎儿的双顶径(BPD)、股骨长度(FL)、头围(HC)、腹围(AC)、腹径(AD)、股骨皮下脂肪厚度(FTSTT)、胎儿腹壁脂肪层厚度(FFL)等7项参数作为输入节点;(3)联合参数法:将孕妇及胎儿的参数作为输入节点。神经网络构建完成后以106例验证组来分别测试3种网络法的误差率和符合率。结果联合参数法准确率最高为86.20%,胎儿参数法为71.30%,孕妇参数法为64.50%。结论BP神经网络预测胎儿体重有很好的应用前景。选取合适的孕妇及胎儿参数建立网络可提高预测的准确性。Objective To investigate the value of BP neural network in predicting fetal birth weight in patients with gestational diabetes mellitus (GDM). Methods 306 pregnant women of full-term pregnancy, single gestation, with no other complications of pregnancy and complications of GDM, were randomly divided into training group (200 cases, including 106 male fetuses and 94 female fetuses ) and test group (106 cases, including 56 male fetuses and 50 female fetuses). Training group were selected to build three different neural networks with different parameters, (1) Pregnant women parameter method: including body mass index (BMI), abdominal circumference, fundal height, pregnancy weight gain, fasting blood sugar (FBS), postprandial blood sugar ( PBS), glycosylated hemoglobin ( GHbA1 c), these seven parameters were used as input nodes. (2) Fetal parameter method: including fetal biparietal diameter (BPD), femur length ( FL), head circumference ( HC ), abdominal circumference ( AC ), abdominal diameter (AD) , femoral thigh soft tissue thickness (FISTT) , and fetal abdominal wall fat layer(FFL), these seven parameters were used as input nodes. (3) Joint parameter method : the above maternal and fetal parameters were used as input nodes. After establishment of neural networks, the data of 106 cases of test group was used to verified prediction error rate and prediction coincidence rate of the three neural networks in predicting fetal birth weight.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.35