检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北电力大学能源与机械工程学院,吉林省吉林市132012
出 处:《核动力工程》2009年第6期57-62,共6页Nuclear Power Engineering
基 金:国家自然科学基金资助项目(50706006)
摘 要:为了进一步提高流型识别的准确率,针对气-液两相流压差波动信号的非平稳特征,提出了一种基于递归定量分析(RQA)和多传感器数据融合技术的流型识别方法。该方法首先采用RQA方法提取压差波动信号的非线性特征参数,对3个不同取压间距压差波动信号的特征参数进行特征层融合,构成融合特征向量,并运用融合的特征向量对支持向量机进行训练并识别流型。对水平管内空气-水两相流4种典型流型的识别结果表明,经过多传感器数据融合,识别结果的可信度明显提高。To increase further the accuracy of flow regime and considering the non-stationary characteristics of differential pressure fluctuation signals of gas-liquid two-phase flow, the flow regime identification method based on recurrence quantification analysis (RQA) and multi-sensor data fusion techniques is put forward. First of all, the recurrence quantification analysis method is used to extract the nonlinear feature parameters of the differential pressure fluctuation signals of gas-liquid two-phase flow, and data fusion of feature layer is conducted by QRA feature parameters of differential pressure signals of three pressure measure intervals, and composes the fusion feature vectors. The fused characteristic vector are input into the support vector machine for identify flow regime. The identification results for four typical flow regimes of air-water two-phase flow in horizontal pipe has shown that the reliability of the identification result is improved evidently.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42