检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机与现代化》2009年第12期18-20,24,共4页Computer and Modernization
基 金:陕西省教育厅专项基金资助项目(05JK303)
摘 要:针对一般粒子群PSO求解高维优化往往陷入局部收敛的"诅咒"问题,设计了一种高维金字塔型协同粒子群优化(A Pyramid-type Cooperative Approach to Particle Swarm Optimizations with Multi-dimensions,PCPSO-M)算法。PCPSO-M算法结合了PSO较快收敛以及CPSO协同算法局部寻优能力强的特点。把粒子群分为三层金字塔型,各个层间、层内相互协同作用,在最上层由于维数过大,则采用一半"较好"适应值的粒子代替另一半"较差"适应值的粒子。这种上下协同,内外"学习"的方法,很好地解决了维数高的问题,弥补了CPSO的不足;尤其在Rosenbrock、Quadric函数的测试中,实验结果表明,解的质量好,效果满意。General particle swarm optimization for solving high-dimensional optimization problems potentially getting trapped in sub-optimal "curse", the paper designs a pyramid-type cooperative approach to particle swarm optimizations with multi-dimensions algorithm(PCPSO-M), which combines PSO' s earlier convergence with CPSO' s stronger searching optimal ability. The particle swarm is divided into three layers, particles of which interacts internally and externally. For excessive dimensions on the top, haft of the "good" fitness of the particles replace the other half of "poor" in the fitness particles. So the "learning" way of coordination is a very effective solution to the problem of high dimension, which makes up for deficiencies of CPSO algorithm ; especiaUy in the Rosenbrock, Quadric function tests, a satisfactory solution can be got.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222