滚动轴承—转子系统非线性参数、强迫联合振动  被引量:17

NONLINEAR VIBRATIONS OF A ROLLING BEARING-ROTOR SYSTEM SUBJECT TO PARAMETRICAL AND EXTERNAL EXCITATIONS

在线阅读下载全文

作  者:张耀强[1,2] 陈建军[1] 唐六丁[2] 林立广[1] 

机构地区:[1]西安电子科技大学机电工程学院,西安710071 [2]河南科技大学工程力学研究所,洛阳471003

出  处:《机械强度》2009年第6期871-875,共5页Journal of Mechanical Strength

基  金:国家"十一五"科技攻关项目(JPPT-115-189);国家863项目(2006AA04Z402)资助~~

摘  要:建立考虑非线性轴承力、径向游隙、变柔度等非线性因素和不平衡力的滚动轴承—转子系统动力学方程,并用自适应Runge-Kutta-Felhberg算法对其求解,利用分岔图、Poincaré映射图和频谱图,分析参数、强迫联合激励的滚动轴承—转子系统的响应、分岔和混沌等非线性动力特性。结果表明,滚动轴承—转子系统有多种周期和混沌响应形式,其振动频率不仅有参数振动频率成分和强迫振动频率成分,而且有二者的倍频成分和组合频率成分;随着径向游隙的增大,转子系统的非线性特性增强;不平衡力较小时,系统中参数振动占主导地位,增大不平衡力有利于抑制转子系统的不稳定振动。随不平衡力的增大,强迫振动逐渐增强,大的不平衡力会诱发系统产生混沌振动;转子系统进入混沌的主要途径是倍周期分岔。The rolling bearing-rotor system in practice is essentially a nonlinear system under parametrical and external excitations. With unbalance force and the sources of nonlinearity such as Hertzian elastic contact force, internal radial clearance and varying compliance considered, the governing differential equations of motion of a rolling bearing-rotor system are derived first and then solved by Runge-Kutta-Felhberg algorithm. Meanwhile the nonlinear dynamic behaviors of the system are illustrated by means of bifurcation dia- grams, Poincare maps and frequency spectrum diagrams. Numerical results show that various periodic responses with frequencies of the external forcing one, the parametrical forcing one, or the linear combinations of them, and even chaotic responses may exist. It is also shown that increase of radial internal clearance may enhance nonlinearity of the system. When the unbalance is weak and the parametrical vibration is the dominating one, proper increase of the unbalance force may relieve the risk of parametrical vibration instability. On the other hand, increase of unbalance force makes forced vibration stronger, and an improper increase of unbalance force may induce chaotic response. The main mute to chaos for this rotor system is the period doubling bifurcation cascade.

关 键 词:轴承—转子系统 参数振动 强迫振动 非线性动力学 分岔 混沌 

分 类 号:O322[理学—一般力学与力学基础] TH113.1[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象