检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算力学学报》2009年第6期928-934,共7页Chinese Journal of Computational Mechanics
基 金:国家自然科学基金(10577016);国防基础预研(A2720060277)资助项目
摘 要:SPH方法模拟工程问题时通常遇到不连续的物理量,因此有必要引入不连续的SPH方法。本文基于Taylor展开公式推导了2D和3D的不连续SPH公式。针对越过材料界面不连续物理量的计算,给出了大变形计算中确定不连续位置的方法;基于Taylor展开公式,从理论上给出了确定不连续公式中xk点的方法,并用数值方法验证了此方法的有效性。比较和讨论了初始SPH方法,CSPM方法与不连续SPH方法处理不连续量的效果。结果显示不连续SPH方法在计算不连续量时有较大的优势。It is necessary to introduce the discontinuous SPH method because discontinuous physical quantities often appear in SPH numerical simulations. Based on Taylor series expansion, discontinuous SPH expressions in 2D and 3D simulations were derived. For the computation of discontinuous physical quantities at material interface with large deformations, how to determine discontinuous locations was presented, and the method to determine xk in discontinuous formulas was proposed theoretically based on Taylor series expansion and validated numerically. Initial SPH method, CSPM method and the discontinuous SPH method were compared and discussed when simulating discontinuous quantities. The results show that the discontinuous SPH method is more attractive when simulating discontinuous quantities.
关 键 词:光滑粒子流体动力学方法(SPH) 不连续SPH公式 大变形 不连续界面 材料界面
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7