基于概率推理和决策树的教学系统的设计与实现  被引量:1

DESIGN AND IMPLEMENTATION OF TUTORING SYSTEM BASED ON PROBABILISTIC INFERENCE AND DECISION TREE

在线阅读下载全文

作  者:杨诚一[1] 朱巧明[2] 

机构地区:[1]苏州大学计算机科学与技术学院,江苏苏州215006 [2]江苏省计算机信息处理技术重点实验室,江苏苏州215006

出  处:《计算机应用与软件》2009年第12期170-173,共4页Computer Applications and Software

摘  要:提出一种结合概率推理与决策理论来有效构建C++智能教学系统ITS(Intelligent tutoring System)中学生学习模型的方法,以帮助ITS达到自适应教学的目的。首先,利用概率推理来识别学生的知识状态。其次,采用学习风格问卷调查(ILS)和机器学习的方法来分类预测学生的学习风格,并且实验数据也验证了这种方法的可靠性和有效性。通过将模块植入现有的ITS并投入实际的教学应用中,学生的反馈表明了本系统对提高学生的学习兴趣和学习效果具有积极作用。This paper proposes a new approach which is based on probabilistic inference and learning style theory to efficiently build student learning model of C ++ intelligent tutoring system ( ITS ) for the purpose of providing this ITS with adaptive teaching strategies. Firstly,probabilistic inference based on Bayesian Network is applied to identify the knowledge states of students. Secondly, learning style survey (ILS) and machine learning tools are integrated to predict and classify the learning styles of students, and also the reliability and validity of this method was proved by real experimental data. The prototype system was transplanted into existing ITS and then put into our real teaching environment for trial. From students' feedback ,the result shows that system has positive influence on helping students enhance their interests and effectiveness in learning C ++ programming language.

关 键 词:智能教学系统 学习风格 贝叶斯网 学生学习模型 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] G434[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象