检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics, Zhengzhou University, Zhengzhou 450052, P. R. China [2]Department of Humanities and Social Sciences, He 'nan Vocational and Technical College of Communications, Zhengzhou 450007, P. R. China
出 处:《Acta Mathematica Sinica,English Series》2009年第12期2077-2092,共16页数学学报(英文版)
基 金:Supported by National Natural Science Foundation of China (Grant No.10671181)
摘 要:An umbilic-free hypersurface in the unit sphere is called MSbius isoparametric if it satisfies two conditions, namely, it has vanishing MSbius form and has constant MSbius principal curvatures. In this paper, under the condition of having constant MSbius principal curvatures, we show that the hypersurface is of vanishing MSbius form if and only if its MSbius form is parallel with respect to the Levi-Civita connection of its MSbius metric. Moreover, typical examples are constructed to show that the condition of having constant MSbius principal curvatures and that of having vanishing MSbius form are independent of each other.An umbilic-free hypersurface in the unit sphere is called MSbius isoparametric if it satisfies two conditions, namely, it has vanishing MSbius form and has constant MSbius principal curvatures. In this paper, under the condition of having constant MSbius principal curvatures, we show that the hypersurface is of vanishing MSbius form if and only if its MSbius form is parallel with respect to the Levi-Civita connection of its MSbius metric. Moreover, typical examples are constructed to show that the condition of having constant MSbius principal curvatures and that of having vanishing MSbius form are independent of each other.
关 键 词:Mobius isoparametric hypersurface Mobius second fundamental form Mobius metric MSbius form paxallel Mobius form
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15