遗传参数的极大似然估计  

Maximum Likelihood Estimation of Genetic Parameters

在线阅读下载全文

作  者:张晴霞[1] 刘妍岩[2] 

机构地区:[1]西南石油大学理学院,四川南充637001 [2]武汉大学数学与统计学院,湖北武汉430072

出  处:《武汉大学学报(理学版)》2009年第6期646-650,共5页Journal of Wuhan University:Natural Science Edition

基  金:国家自然科学基金资助项目(10771163)

摘  要:将Luo和Woolliams模型中的混合正态分布推广到混合对数正态分布,先用矩量法得到各参数的估计值,再将此估计值作为EM(Expectation Maximization)算法迭代的初值进行迭代,将矩量估计和极大似然估计结合起来,提高了EM算法的收敛速度并使修改后的模型更符合生物学事实.In QTL (quantitative trait locus) studies, it is commonly assumed that the quantitative trait are distributed as normals. However, as Luo & Woolliams have pointed, this assumption is not reasonable in practice, which will lead to bias of the corresponding estimators. They also have suggested that the log- normal distribution of quantitative trait would be more reasonable. In this paper, under the assumption of lognormal distributed quantitative trait, we follow two estimating methodologies proposed by Luo and Woolliams: moment estimate and maximum likelihood estimate based on EM algorithm to estimate parameters.

关 键 词:极大似然估计 EM(Expectation Maximization)算法 对数正态 数量性状基因位点 连锁 标记基因 

分 类 号:O212[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象