Copositive approximation by rational functions with prescribed numerator degree  

Copositive approximation by rational functions with prescribed numerator degree

在线阅读下载全文

作  者:YU Dan-sheng ZHOU Song-ping 

机构地区:[1]Department of Mathematics, Hangzhou Normal University, Hangzhou 310036, China Department of Mathematics, Statistic and Computer Science, St. Francis Xaiver University, Antigonish, Nova Scotia, Canada B2G 2W5 [2]Institute of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310028, China

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2009年第4期411-416,共6页高校应用数学学报(英文版)(B辑)

基  金:supported by the National Natural Science Foundation of China (10901044);Research Project of Hangzhou Normal University (YS05203154)

摘  要:The paper proves that, if f(x) ∈ L^p[-1,1],1≤p〈∞ ,changes sign I times in (-1, 1),then there exists a real rational function r(x) ∈ Rn^(2μ-1)l which is eopositive with f(x), such that the following Jackson type estimate ||f-r||p≤Cδl^2μωφ(f,1/n)p holds, where μ is a natural number ≥3/2+1/p, and Cδ is a positive constant depending only on δ.The paper proves that, if f(x) ∈ L^p[-1,1],1≤p〈∞ ,changes sign I times in (-1, 1),then there exists a real rational function r(x) ∈ Rn^(2μ-1)l which is eopositive with f(x), such that the following Jackson type estimate ||f-r||p≤Cδl^2μωφ(f,1/n)p holds, where μ is a natural number ≥3/2+1/p, and Cδ is a positive constant depending only on δ.

关 键 词:copositive approximation rational functions approximation rate 

分 类 号:O172.2[理学—数学] O174.13[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象