检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邵利民[1,2] 傅刚[1] 曹祥村[2] 周建[2]
机构地区:[1]中国海洋大学海洋环境学院,山东青岛266003 [2]海军大连舰艇学院军事海洋系,辽宁大连116018
出 处:《自然灾害学报》2009年第6期104-111,共8页Journal of Natural Disasters
基 金:国家自然科学基金资助项目(60572160)
摘 要:利用前馈型BP神经网络模型,对发生于中国沿海的热带气旋的移动路径进行了预报应用研究。根据中国《台风年鉴》发布的每个台风过程记录,对预报试验的台风个例分别选取了经度、纬度、中心气压和最大风速等81个因子,由多元回归选取了其中相关性好的因子,进行网络的学习训练,在获取前24h间隔6h的4次台风信息的基础上,用来预报了台风未来24h,48h和72h的短期路径变化。将该方法预报结果与CLIPER模式预报结果进行了比较,结果表明,BP神经网络模式的预报精度比CLIPER模式的高。In this paper, the forward feedback BP neural network model was used for study to forecast tropical cyclone track around the China Sea. The data of typhoon case were selected from the Tropical Cyclone Almanac published by the China Meteorological Administration. For each typhoon case to be tryed for forecasting, 81 factors, such as longitude, latitude, central air press, maximum wind speed, etc, were chosen. The multivariate regression arithmetic was applied to filter factors based on the correlation between the factor and typhoon track, and then the BP network was trained. After obtaining the information of typhoon every 6 hour of former 24 hours, we can predict the typhoon track for next 24, 48, and, 72 hours. The method can be used on ship. Comparing the way with the model CLIPER, it is shown that the accuracy of BP model is better than that of the model CLIPER.
分 类 号:P457.8[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.69