检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南科技大学社会科学处,湖南湘潭411201 [2]湖南科技大学能源与安全工程学院,湖南湘潭411201
出 处:《自然灾害学报》2009年第6期193-197,共5页Journal of Natural Disasters
基 金:国家自然科学基金资助项目(50674047);湖南省重点科技攻关项目(05sk2008)
摘 要:结合粗集理论的属性约简功能和人工神经网络的非线性映射特性,提出了煤与瓦斯突出的一种预测方法。首先用粗集理论对训练样本进行属性约简和降噪,然后将经过预处理的训练样本代入神经网络进行训练,获得稳定的网络结构,最后用训练好的神经网络对待测样本进行预测。实际应用表明:瓦斯压力、瓦斯放散速度、地质构造、煤的坚固性系数和开采深度是煤与瓦斯突出预测的必要指标;粗集神经网络模型具有较高的预测精度和良好的实用性,是一种十分有效的煤与瓦斯突出预测方法。A prediction method of coal and gas outburst was presented based on the combination of attribute reduction function of rough set theory and nonlinear mapping characteristics of artificial neural network. Firstly, attributereduction and denoising were executed. Secondly, the neural network was trained, and a steady network structure was obtained. Finally, the testing samples were predicted by using the efficient neural network. Practical applica-tion demonstrates that : ( 1 ) gas pressure, gas emission rate and mining depth are the indispensable indexes of coal and set and artificial neural network has high precision and good , geological structure, protodyakonov coefficient of coal gas outburst;(2) the prediction model based on rough practicability, and is a very efficient method for predicting coal and gas outburst.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33