检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李培强[1] 刘志勇[1] 李欣然[1] 汪沨[1]
机构地区:[1]湖南大学电气与信息工程学院,湖南长沙410082
出 处:《湖南大学学报(自然科学版)》2009年第12期40-44,共5页Journal of Hunan University:Natural Sciences
基 金:国家自然科学基金资助项目(06071007;50977023);高等学校博士学科点专项科研基金资助项目(20070532052)
摘 要:针对电力电子设备综合负荷模型难以用机理模型描述的现状,构造了动态综合负荷的模糊神经网络模型.该模型具有模糊推理和神经网络的优点,能很好地逼近动态负荷的模型输出.通过对已知实测建模数据的训练,分析了模糊神经网络负荷模型的前件参数、结论参数的辨识策略,阐述了模糊隶属度和模糊规则的形成过程.对负荷构成相异的4组实测变电站负荷数据,用其中1组建模数据进行训练,得出模糊模型结构和参数,用该模型去拟合其他3组数据,对模糊神经网络负荷模型的综合能力进行验证.实例表明,该模糊神经网络负荷模型不仅具有很强的自描述能力和收敛性,而且具有良好的综合描述能力.In order to overcome the trouble that mechanism power load models are difficult to describe composite load characteristics of power electronics equipment, this paper put forward a kind of fuzzy neural power load model based on ANFIS (adaptive-network-based fuzzy inference system). Integrating the advantages of fuzzy inference and neural network, the model can accurately represent the output behavior of dynamic power load. Through training and optimizing the neural network with the measured field data, the authors obtained the before-condition parameters and conclusion-parameters of the model. Combining the application instance, the authors elaborated the procedure forming fuzzy subordination parameter and fuzzy rule. To verify the synthesizing ability of the model, the authors applied 4 data samples at power substation field to model dynamic power load. One of them was used to identify the model, and the others were used to test the model. The results show that the fuzzy neural network model has not only excellent selfdescription ability but also strong synthesizing ability.
关 键 词:电力系统 综合负荷 负荷建模 模糊系统 神经网络 综合能力
分 类 号:TM743[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222