检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程》2009年第24期75-77,共3页Computer Engineering
摘 要:提出一种针对客户离网问题的改进决策树分类算法——M-AdaBoost级联决策树。采用级联式的思想构造多个基于AdaBoost决策树分类器,通过设定子分类器的判决信息,组合成级联式决策树。实验结果表明,该方法相对于单一的C4.5决策树、传统的AdaBoost决策树以及随机森林具有更好的分类效果。This paper presents a revised decision-tree classification algorithm for customers’ churning,M-AdaBoost cascade of decision tree.By constructing a number of AdaBoosted decision tree classifier,the algorithm produces cascade composition of the decision tree.Experimental results prove the improvement achieved by the new algorithm,and it is better than the result of C4.5 decesion tree,AdaBoost decesion tree and random forest.
分 类 号:TP311.5[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222