检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴明芬[1,2] 沈挺[1] 曹存根[2] 吴贤维[1]
机构地区:[1]五邑大学信息学院,广东江门529020 [2]中国科学院计算技术研究所,北京100190
出 处:《北京交通大学学报》2009年第6期86-90,共5页JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基 金:国家自然科学基金资助项目(60573063;60773059);广东省自然科学基金资助项目(0501332;5013318)
摘 要:张铃等在"模糊粒度计算方法"中,核心定理证明中构造的等价关系是循环定义的,且没有证明它的截关系与商空间所对应的等价关系是相等的;模糊等价关系的粗细定义与模糊集理论的意义不一致,容易引起歧义.本文用通用的模糊数学符号和序代数理论的方法和观点对其进行修正和补充,给出两个定理的完整证明,使得相关结果的表达更简洁和规范,完善了模糊商空间理论.Zhang Bo and Zhang Ling, in their paper Theory of fuzzy quotient space, proposed a new method of granular computing which combine fuzzy sets and theory of quotient space. Unfortunately, the proof of two core theorems was not tight and complete enough,i, e., the fuzzy equivalence relation constructed in the proof process of theorem, is cyclical definition, and its cut relations and quotient space corresponding to the equivalence relation are equal which isn't obvious. Moreover, the definition of inclusion for fuzzy equivalence relations is not inconsistent with the significance of the fuzzy set theory, easily lead to ambiguity. In this paper, with the fuzzy mathematical symbols and the method of general order algebraic theory, the proof of two core theorems is amended, and given complete proof. So making expression of relevant results and norms are more concise and standard, and perfect the theory of fuzzy quotient space.
关 键 词:粒度计算 模糊商空间 模糊等价关系 分层递阶结构 上确界 下确界 完备格
分 类 号:TP182[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7