检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]军械工程学院光学与电子工程系,石家庄050003
出 处:《中国电子科学研究院学报》2009年第6期656-660,共5页Journal of China Academy of Electronics and Information Technology
摘 要:由于目标运动及其所处环境的复杂性,雷达目标数据之间往往呈现出局部的非线性,如果采用传统的线性子空间方法降维,必将会使雷达目标识别性能有所下降,基于以上原因,文章尝试将流形学习的思想应用于逆合成孔径雷达(ISAR,inverse synthetic aperture radar)目标二维像的目标识别。局部保持投影(LPP,locality preserving projections)是一类有效的流形学习算法,但它在构建权矩阵时没有充分利用样本的类别信息。针对此问题,提出了一种称为局部保持判别投影(LPDP,locality preserving discriminant projections)的子空间学习方法,该方法通过构建类内和类间两个权矩阵来描述多类样本数据集的局部几何结构,以使在高维空间中相互靠近的同类数据点在低维嵌入空间中也相互靠近,而不同类的近邻点则尽可能地远离。对三类飞机目标的仿真实验结果表明,与PCA、LDA和LPP等算法相比,LPDP算法具有更好的识别性能。It is well known that the relationship between different radar targets is often nonlinear due to the complexity of target's movement and environments, so the recognition rate will decrease when the traditional linear dimensionality reduction methods are used. For this reason, the idea of manifold learning is introduced to Inverse Synthetic Aperture Radar (ISAR) 2D image target recognition. Locality Preserving Projections (LPP) is an effective method of manifold learning, but it does not make full use of the class label information when the adjacency matrix is constructed. In this paper, we propose a new subspace learning method called Locality Preserving Discriminant Projections (LPDP). In LPDP, the local geometry of multi-class samples are described by the within-class adjacency matrix and the between-class adjacency matrix, and the data points are mapped into a subspace in which the nearby points with the same label are close to each other while the nearby points with different labels are far apart. The simulated experimental results about three aircraft targets indicate that the LPDP algorithm has better classification performance than those of PCA, LDA and LPP.
关 键 词:流形学习 局部保持投影 ISAR二维像 目标识别
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104