扩展在上GF(3)新型自缩序列模型及研究  被引量:2

New model and studying of self-shrinking sequence developed on GF(3)

在线阅读下载全文

作  者:王锦玲[1] 陈亚华[1] 兰娟丽[1] 

机构地区:[1]郑州大学数学系,郑州450001

出  处:《计算机工程与应用》2009年第35期114-119,共6页Computer Engineering and Applications

基  金:河南省教育厅自然科学指导性项目NO.200510459003~~

摘  要:自收缩序列是一类重要的伪随机序列,而周期和线性复杂度是序列伪随机性的经典量度。如何构造自缩序列的新模型,使生成序列具有大的周期和高的线性复杂度是一个重要的问题。针对这一问题,构造了GF(3)上一种新型的自缩序列模型,利用有限域理论,研究了生成序列的周期和线性复杂度,得到一些主要结论:周期上界3n,下界32骔n/3」;线性复杂度上界3n,下界32骔n/3」-1。进一步讨论了基于GF(3)上本原三项式和四项式的自缩序列的周期和线性复杂度。Self-shrinking sequence is an important kind of pseudo-random sequences.Period and linear complexity are classic measures of pseudo-random sequences.So,it becomes an important issue to construct new models of self-shrinking sequence that could generate sequences with great period and high linear complexity.In view of this question,a new model of self-shrinking sequence over GF(3) is constructed.After the study of the period and linear complexity of the generated sequence using the theory of finite fields,there are some main conclusions:The upper bound of the period is 3^n ,the lower bound is 3^2[n/3];The upper bound of linear complexity is 3^n ,the lower bound is 3^2[n/3]-2 .Moreover,the period and linear complexity of the generated sequence based on primitive trinomials and quarternomials of degree n over GF(3) are discussed.

关 键 词:自缩序列 周期 线性复杂度 本原三项式 本原四项式 

分 类 号:TN918.4[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象