检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]暨南大学信息技术研究所,广州510075 [2]五邑大学信息学院,江门529020
出 处:《计算机与数字工程》2009年第12期147-150,共4页Computer & Digital Engineering
摘 要:在基于磁瓦表面缺陷图像直方图、纹理、投影和形状的特征提取的基础上,提出了一种用LVQ神经网络进行缺陷分类的方法,对现场采集到的6种主要缺陷类型进行了试验。试验结果表明,基于LVQ神经网络的分类器训练与分类的时间短,多缺陷种类分类时准确率高。The LVQ neural network classification method was introdued based on feature extraction of arc segments ceramic magnet for histogram, texture, projection, shape. Testing by 6 main defect types collected from online was made. The results indicated that the surface defects classification based on LVQ neural network spent little time for training and classifying, and its accuracy was higher.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15