检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学自动化学院,哈尔滨150001
出 处:《模式识别与人工智能》2009年第6期854-861,共8页Pattern Recognition and Artificial Intelligence
基 金:国家863计划项目(No.2008AA01Z148);国家自然科学基金项目(No.60975022);黑龙江省杰出青年科学基金项目(No.JC200703)资助
摘 要:提出一种基于子模式的完全二维主成分分析的步态识别算法.首先对步态能量图进行子块划分,自适应地去掉对分类无用的子块.然后分别对每个子图像采用完全二维主成分分析方法进行特征抽取.最后将各个子块的特征合为整体采用最近邻分类器来测试识别.应用上述方法在CASIA步态数据库上进行实验,通过实验确定分块数目.实验结果表明本文算法明显好于完全二维主成分分析方法,不但有利于提取局部特征,而且对外套变化、背包,行走方向变化的步态识别也较有效.A gait recognition method based on subpattern complete two dimensional principal component analysis (SpC2DPCA) is proposed. Firstly, gait energy images are divided into small sub-images and any ineffectual subblock is removed adaptively. Then, C2DPCA approach is applied to every sub-image directly to obtain sub-feature. Finally, those sub-features are synthesized into the whole for subsequent classification using the nearest neighbor classifier. The proposed gait recognition method is evaluated on the CASIA gait database, and the number of sub-pattern division is determined through experiments. The experimental results demonstrate that the performance of SpC2DPCA is obviously superior to that of C2DPCA. The proposed method is effective in local feature extraction and person identification with clothes changing, backpacking and direction of gait changing.
关 键 词:步态识别 步态能量图(GEI) 完全二维主成分分析(C2DPCA) 子模式的完全二维主成分分析(SpC2DPCA)
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3