机构地区:[1]Department of Hepatobiliary and Pancreatic Surgery, Key Laboratory of Combined Multi-organ Transplantation of Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China [2]Department of Toxicology, Zhejiang University School of PublicHealth, Hangzhou, Zhejiang 310031, China
出 处:《Chinese Medical Journal》2009年第24期3025-3031,共7页中华医学杂志(英文版)
基 金:This work was supported partly by grants from the National Natural Science Foundation of China (No. 30772054 and No. 30672071).
摘 要:Background Hepatic ischemia-reperfusion (I/R) injury occurs in many clinical procedures. The molecular mechanisms responsible for hepatic I/R injury however remain unknown. Sphingolipids, in particular ceramide, play a role in stress and death receptor-induced hepatocellular death, contributing to the progression of several liver diseases including liver I/R injury. In order to further define the role of sphingolipids in hepatic I/R, systemic analysis of sphingolipids after reperfusion is necessary. Methods We investigated the lipidomic changes of sphingolipids in a rat model of warm hepatic I/R injury, by delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry (DE MALDI-TOF-MS). Results The total amounts of ceramide and sphingomyelin and the intensity of most kinds of sphingolipids, mainly sphingomyelin, significantly increased at 1 hour after reperfusion (P 〈0.05) and reached peaks at 6 hours after reperfusion (P 〈0.01) compared to controls. Six new forms of ceramide and sphingomyelins appeared 6 hours after reperfusion, they were (m/z) 537.8, 555.7, 567.7, 583.8, 683.5 and 731.4 respectively. A ceramide-monohexoside (m/z) 804.4 (CMH(d18:1C22:1+Na)+) also increased after reperfusion and correlated with extent of liver injury after reperfursion. Conclusions Three main forms of sphingolipids, ceramide, sphingomyelin and ceramide-monohexoside, are related to hepatic I/R injury and provide a new perspective in understanding the mechanisms responsible for hepatic I/R injury.Background Hepatic ischemia-reperfusion (I/R) injury occurs in many clinical procedures. The molecular mechanisms responsible for hepatic I/R injury however remain unknown. Sphingolipids, in particular ceramide, play a role in stress and death receptor-induced hepatocellular death, contributing to the progression of several liver diseases including liver I/R injury. In order to further define the role of sphingolipids in hepatic I/R, systemic analysis of sphingolipids after reperfusion is necessary. Methods We investigated the lipidomic changes of sphingolipids in a rat model of warm hepatic I/R injury, by delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry (DE MALDI-TOF-MS). Results The total amounts of ceramide and sphingomyelin and the intensity of most kinds of sphingolipids, mainly sphingomyelin, significantly increased at 1 hour after reperfusion (P 〈0.05) and reached peaks at 6 hours after reperfusion (P 〈0.01) compared to controls. Six new forms of ceramide and sphingomyelins appeared 6 hours after reperfusion, they were (m/z) 537.8, 555.7, 567.7, 583.8, 683.5 and 731.4 respectively. A ceramide-monohexoside (m/z) 804.4 (CMH(d18:1C22:1+Na)+) also increased after reperfusion and correlated with extent of liver injury after reperfursion. Conclusions Three main forms of sphingolipids, ceramide, sphingomyelin and ceramide-monohexoside, are related to hepatic I/R injury and provide a new perspective in understanding the mechanisms responsible for hepatic I/R injury.
关 键 词:lipidomic SPHINGOLIPIDS LIVER ISCHEMIA-REPERFUSION matrix-assisted laser desorption ionizationtime-of-flight mass spectrometry
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...