应用COX模型分析影响乳腺浸润性癌预后的生物学因素  被引量:3

An analysis of biological factors influencing prognosisof invasive breast cancer by COX model

在线阅读下载全文

作  者:梁小曼 程嘉骧 侯景辉 

出  处:《癌症》1998年第5期341-342,345,共3页Chinese Journal of Cancer

基  金:广州市卫生局科研基金

摘  要:目的:探讨增殖细胞核抗原(PCNA)、原癌基因(CerbB2)、组织蛋白酶D(CathD)、转移抑制基因(nm23H1)、微血管数(MVC)、肥大细胞数(MC)、雌激素调节基因(PS2)、前列腺特异抗原(PSA)9个生物学因素与乳腺浸润性癌(invasivebreastcancer,IBC)预后的关系。方法:单因素分析:KaplanMeir生存曲线法。列联检验法。多因素分析:COX比例风险模型。结果:经COX模型MPLR方法检验显示出明显影响乳腺浸润性癌预后的4个因素,PS2、MVC、nm23H1、CerbB2.用比例风险模型计算出每个患者的预后指数PI(Prognosticindex),根据预后指数大小将86例乳腺癌术后患者分为2组,分别建立其术后生存率预测模型。结果提示PI值愈大,预后愈差,反之预后则好。结论:PS2、MVC、nm23H1、CerbB2是乳腺浸润性癌术后独立的预后指标。PI可能是临床评价病人预后、识别IBC术后复发的高危险性病人很有实用价值的指标。Purpose:To detect the relationship between prognosis of invasive breast cancer(IBC)and nine biological factors:proliferating cell nuclear antigen(PCNA),C erbB 2,CathepsinD,nm23 H1,microvessel count(MVC),mast cell(MC),PS2 and prostate specific antigen(PSA).Methods:Univariate analysis:Kaplan Meier survival curve,crosstabs statistics,multaivariate analysis:COX proportional hazard modle.Results:MPLR test whowed the factors wiich influencing prognosisof invasive breast cancer included PS2,MVC,nm23 H1 and C erbB 2.Using proportional hazard model,the PI(Prognostic index)of each cases were calculated.according to their PI,86 cases of breast cancer accepted surgical treatment were divided into 2 groups and the predicting model of survival rates in each group were determined.Result the larger PI,the poorer the prognosis,the smaller PI,the better the prognosis.Conclusions:PS2,MVC,nm23 H1 and C erbB 2 coud be considered as the independent prognostic predictors in invasive breast cancer after resection.The PI may be a useful clinical tool for evaluating the prognosis of patients and identifying the population with“high risk”of recurrence and death in IBC.

关 键 词:COX模型 预后 乳腺癌 浸润性 生物学因素 

分 类 号:R737.9[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象