检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安理工大学机械与精密仪器工程学院,陕西西安710048
出 处:《兵工学报》2009年第12期1684-1690,共7页Acta Armamentarii
基 金:国家重点基础研究发展计划项目(2007CB707706);陕西省自然科学基金项目(2009JQ7006)
摘 要:研究了BTA深孔加工钻杆系统的稳定性和分岔。考虑了钻杆质量偏心和切削力波动的影响,利用切削液非线性流体力以增加数值计算的精度。通过引入变分约束原理的有限元方法,同时完成了非线性分析所需的流体力及其Jacobian矩阵的计算。在稳定性分析中,通过改变系统的时间尺度,将非线性钻杆系统周期轨迹的周期显式地出现在钻杆系统的系统方程中;然后对传统打靶法进行改造,将周期也作为一个参数一起加入打靶法的迭代过程,确定了钻杆运行周期轨迹并有效减少了周期计算量。结合Floquet稳定性理论,将理论计算与实验结果相结合验证了上述方法的正确性和有效性。The stability and bifurcation of the drilling shaft system in processing deep hole based on boring and trepanning association were analyzed.Taking effects of the mass eccentricity and the cutting force fluctuating on the stability and bifurcation into account,nonlinear hydrodynamic force was adopted to increase the numerical accuracy.Based on the isoparametric finite element with eight node method,the nonlinear hydrodynamic force and their Jacobian matrices of compatible accuracy were calculated simultaneously.In the stability analysis,by changing the time scale,the period of the periodic orbit of the nonlinear drilling shaft system was drawn into the governing equation of the system explicitly;the generalized shooting procedure was recompiled;the period took part into the iteration procedure of the shooting method as a parameter,and thus the periodic orbit and its period of the drilling shaft system were determined rapidly.Correctness and effectiveness of the proposed method were verified by combining the theoretical computation with the experimented results based on the Floguet stability theory.
关 键 词:机械制造工艺与设备 深孔加工 钻杆 非线性动力学 稳定性 分岔
分 类 号:TH113.3[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222