无线传感器网络中基于SVR的节点数据预测算法  被引量:10

Node data prediction based on SVR in wireless sensor network

在线阅读下载全文

作  者:邹长忠[1] 

机构地区:[1]福州大学数学与计算机科学学院,福州350108

出  处:《计算机应用》2010年第1期127-129,136,共4页journal of Computer Applications

基  金:福建省自然科学基金资助项目(S0750006);福州大学科技发展基金资助项目(2008-XY-15);福建省教育厅基金资助项目(JB09007)

摘  要:无线传感器网络主要用于收集环境的信息,但是由于能量的限制或者安全性等问题,存在无线传感器网络节点失效问题,一旦节点失效,将不能收集后续数据,如何预测节点将来的数据成为一个关键问题。提出一种基于支持向量回归(SVR)的节点数据预测算法,充分利用节点先前收集的数据,预测未来的数据。从仿真实验上,证明该算法的有效性和较小的预测误差率。Wireless sensor network is mainly used in collecting the environment information, but due to limited energy and security some nodes are easy to break down, thus these nodes will not collect data. How to forecast the sequent data will become a key problem. In this paper, a data estimating algorithm based on Support Vector Regression (SVR) in Wireless Sensor Network (WSN) was proposed which used the previous data to estimate the sequent data. The simulation shows that the scheme is efficient and of less prediction error.

关 键 词:无线传感器网络 支持向量回归 节点 数据预测 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象