检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用》2010年第1期224-226,共3页journal of Computer Applications
基 金:国家自然科学基金资助项目(60475002);航空科学基金资助项目(2008ZD5600);江西省教育厅科技项目(GJJ09197)
摘 要:由于产业结构的调整、居民消费能力消费结构的变化和市场化等因素的影响,城区中长期电力负荷预测具有相当的难度。建立一个基于遗传算法和BP算法相结合的神经网络预测模型,以南昌市为例做实证,并与传统BP神经网络和模拟退火预测结果做对比,验证了该模型的准确性。最后对城区未来十几年的基本用电负荷进行了预测和分析。Due to the industrial structure adjustment, the change of resident consumption ability and pattern of consumption, and market-oriented and so on, long-term/mid-term power load forecasting for urban plans faces considerable difficulties. In the past two years, the methods that combined genetic algorithm and Back Propagation (BP) algorithm have been used for short-term power load forecasting rather than long-term/mid-term power load forecast of electricity. In this paper, a neural network prediction model with combination of genetic algorithm and BP neural network was established; the example in Nanchang was given to validate the accuracy of the algorithm, by comparing with the traditional BP neural network and Simulated Annealing (SA) prediction. Then the basic electricity load of Nanchang in the next dozens of years was forecasted and analyzed.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175