Comparisons of Metrics on Teichmller Space  

Comparisons of Metrics on Teichmller Space

在线阅读下载全文

作  者:Zongliang SUN Lixin LIU 

机构地区:[1]Department of Mathematics, Suzhou University,Suzhou 215006, Jiangsu,China [2]Department of Mathematics, Zhongshan University, Guangzhou 510275, China

出  处:《Chinese Annals of Mathematics,Series B》2010年第1期71-84,共14页数学年刊(B辑英文版)

基  金:supported by the National Natural Science Foundation of China (No. 10871211)

摘  要:For a Riemann surface X of conformally finite type (g, n), let dT, dL and dpi (i = 1, 2) be the Teichmuller metric, the length spectrum metric and Thurston's pseudometrics on the Teichmutler space T(X), respectively. The authors get a description of the Teichmiiller distance in terms of the Jenkins-Strebel differential lengths of simple closed curves. Using this result, by relatively short arguments, some comparisons between dT and dL, dpi (i = 1, 2) on Tε(X) and T(X) are obtained, respectively. These comparisons improve a corresponding result of Li a little. As applications, the authors first get an alternative proof of the topological equivalence of dT to any one of dL, dp1 and dp2 on T(X). Second, a new proof of the completeness of the length spectrum metric from the viewpoint of Finsler geometry is given. Third, a simple proof of the following result of Liu-Papadopoulos is given: a sequence goes to infinity in T(X) with respect to dT if and only if it goes to infinity with respect to dL (as well as dpi (i = 1, 2)).

关 键 词:Length spectrum metric Teichmuller metric Thurston's pseudo-metrics 

分 类 号:O189.11[理学—数学] O157.5[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象