检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics, Suzhou University,Suzhou 215006, Jiangsu,China [2]Department of Mathematics, Zhongshan University, Guangzhou 510275, China
出 处:《Chinese Annals of Mathematics,Series B》2010年第1期71-84,共14页数学年刊(B辑英文版)
基 金:supported by the National Natural Science Foundation of China (No. 10871211)
摘 要:For a Riemann surface X of conformally finite type (g, n), let dT, dL and dpi (i = 1, 2) be the Teichmuller metric, the length spectrum metric and Thurston's pseudometrics on the Teichmutler space T(X), respectively. The authors get a description of the Teichmiiller distance in terms of the Jenkins-Strebel differential lengths of simple closed curves. Using this result, by relatively short arguments, some comparisons between dT and dL, dpi (i = 1, 2) on Tε(X) and T(X) are obtained, respectively. These comparisons improve a corresponding result of Li a little. As applications, the authors first get an alternative proof of the topological equivalence of dT to any one of dL, dp1 and dp2 on T(X). Second, a new proof of the completeness of the length spectrum metric from the viewpoint of Finsler geometry is given. Third, a simple proof of the following result of Liu-Papadopoulos is given: a sequence goes to infinity in T(X) with respect to dT if and only if it goes to infinity with respect to dL (as well as dpi (i = 1, 2)).
关 键 词:Length spectrum metric Teichmuller metric Thurston's pseudo-metrics
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.220.216.164