Realizing Enveloping Algebras via Varieties of Modules  被引量:3

Realizing Enveloping Algebras via Varieties of Modules

在线阅读下载全文

作  者:Ming DING Jie XIAO Fan XU 

机构地区:[1]Department of Mathematics, Tsinghua University, Beijing 100084~ P. R~ China

出  处:《Acta Mathematica Sinica,English Series》2010年第1期29-48,共20页数学学报(英文版)

基  金:Supported by NSF of China (Grant No. 10631010);by NKBRPC (Grant No. 2006CB805905)

摘  要:By using the Ringel-Hall algebra approach, we investigate the structure of the Lie algebra L(A) generated by indecomposable constructible sets in the varieties of modules for any finite- dimensional C-algebra A. We obtain a geometric realization of the universal enveloping algebra R(A) of L(A), this generalizes the main result of Riedtmann. We also obtain Green's formula in a geometric form for any finite-dimensional C-algebra A and use it to give the comultiplication formula in R(A).By using the Ringel-Hall algebra approach, we investigate the structure of the Lie algebra L(A) generated by indecomposable constructible sets in the varieties of modules for any finite- dimensional C-algebra A. We obtain a geometric realization of the universal enveloping algebra R(A) of L(A), this generalizes the main result of Riedtmann. We also obtain Green's formula in a geometric form for any finite-dimensional C-algebra A and use it to give the comultiplication formula in R(A).

关 键 词:Ringel-Hall algebra constructible set VARIETY universal enveloping algebra 

分 类 号:O152.5[理学—数学] TP311.13[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象